Pages

Subscribe:

Senin, 07 November 2011

mikrokontroler

Mikrokontroler adalah sebuah sistem komputer fungsional dalam sebuah chip. Di dalamnya terkandung sebuah inti prosesor, memori (sejumlah kecil RAM, memori program, atau keduanya), dan perlengkapan input output.
Dengan kata lain, mikrokontroler adalah suatu alat elektronika digital yang mempunyai masukan dan keluaran serta kendali dengan program yang bisa ditulis dan dihapus dengan cara khusus, cara kerja mikrokontroler sebenarnya membaca dan menulis data. Sekedar contoh, bayangkan diri Anda saat mulai belajar membaca dan menulis, ketika Anda sudah bisa melakukan hal itu Anda bisa membaca tulisan apapun baik buku, cerpen, artikel dan sebagainya, dan Andapun bisa pula menulis hal-hal sebaliknya. Begitu pula

Minggu, 30 Oktober 2011

MERAKIT KOMPUTER

Berikut ini akan dibahas mengenai bagaimana cara merakit komputer, terutama bagi mereka yang baru belajar .. dari beberapa referensi yang saya pelajari .. maka berikut ini akan dijelaskan langkah demi langkah cara merakit komputer, mudah-mudahan bermanfaat .. Red. deden
Komponen perakit komputer tersedia di pasaran dengan beragam pilihan kualitas dan harga. Dengan merakit sendiri komputer, kita dapat menentukan jenis komponen, kemampuan serta fasilitas dari komputer sesuai kebutuhan.Tahapan dalam perakitan komputer terdiri dari:

komunikasi data

Pertama kali komputer ditemukan, ia belum bisa berkomunikasi dengan sesamanya. Pada saat itu komputer masih sangat sederhana. Berkat kemajuan teknologi di bidang elektronika, komputer mulai berkembang pesat dan semakin dirasakan manfaatnya dalam kehidupan kita. Saat ini komputer sudah menjamur di mana-mana. Komputer tidak hanya dimonopoli oleh perusahaan-perusahaan, universitas-univeristas, atau lembaga-lembaga lainnya, tetapi sekarang komputer sudah dapat dimiliki secara pribadi seperti layaknya kita memiliki radio.
Mayoritas pemakai komputer terdapat di perusahaan-perusahaan atau kantor-kantor. Suatu perusahaan yang besar seringkali memiliki kantor-kantor cabang. Apabila suatu perusahaan yang mempunyai cabang di beberapa tempat adalah tidak efisien apabila setiap kali dilakukan pengolahan datanya harus dikirim ke pusat komputernya dengan cara manual. Perlu diperhatikan bahwa berfungsinya suatu komputer untuk menghasilkan informasi yang benar-benar handal, maka sedapat mungkin data yang dimasukkan benar-benar asli dari tangan pertama pencatat datanya, dan belum mengalami pengolahan dari tangan ke tangan.
Apabila demikian bagaimana dengan data yang akan dioleh berasal dari cabang-cabang yang tersebar di beberapa tempat yang jauh letaknya dari pusat komputer. Di sini pentingnya dibangun suatu sistem komputerisasi, terutama untuk mengurangi waktu yang dibutuhkan untuk pengolahan data. Tetapi kenyataannya, dalam sirkulasi suatu sistem pengolahan data, pengolahan itu sendiri hanya suatu bagian. Secara garis besar suatu sistem sirkulasi pengolahan data terdiri dari pengumpulan data, pemrosesan, dan distribusi. Dari sirkulasi ini masalah yang banyak dijumpai dari perusahaan-perusahaan justru dalam hal pengumpulan data dan distribusi data dan informasi untuk beberapa lokasi.
Pengertian Komunikasi data berhubungan erat dengan pengiriman data menggunakan sistem transmisi elektronik satu terminal komputer ke terminal komputer lain. Data yang dimaksud disini adalah sinyal-sinyal elektromagnetik yang dibangkitkan oleh sumber data yang dapat ditangkap dan dikirimkan ke terminal-terminal penerima. Yang dimaksud terminal adalah peralatan untuk terminal suatu data seperti disk drive, printer, monitor, papan ketik, scanner, plotter dan lain sebagainya.
Mengapa diperlukan suatu teknik komunikasi data antar komputer satu dengan komputer atau terminal yang lain. Salah satunya adalah sebagai berikut :
  1. Adanya distributed processing , ini mutlak diperlukan jaringan sebagai sarana pertukaran data.
  2. Transaksi sering terjadi pada suatu lokasi yang berbeda dengan lokasi pengolahan datanya atau lokasi di mana data tersebut akan digunakan, sehingga data perlu dikirim ke lokasi pengolahan data dan dikirim lagi ke lokasi yang membutuhkan informasi dari data tersebut.
  3. Biasanya lebih efisien atau lebih murah mengirim data lewat jalur komunikasi, lebih-lebih bila data telah diorganisasikan melalui komputer, dibandingkan dengan cara pengiriman biasa.
  4. Suatu organisasi yang mempunyai beberapa lokasi pengolahan data, data dari suatu lokasi pengolahan yang sibuk dapat membagi tugasnya dengan mengirimkan data ke lokasi pengolahan lain yang kurang atau tidak sibuk.
Jaringan komputer mulai berkembang di awal tahun 1980 sebagai media komunikasi komunikasi yang berkembang pesat. Sehingga sampai saat ini komputer menjadi sarana komunikasi yang sangat efektif dan hampir seluruh bentuk informasi melibatkan komputer dalam penggunaannya.
Dengan ditemukannya internet, berbagai informasi bisa diakses dari rumah dengan biaya yang murah. Komunikasi data sebenarnya merupakan gabungan dua teknik yang sama sekali jauh berbeda yaitu pengolahan data dan telekomunikasi. Dapat diartikan bahwa komunikasi data memberikan layanan komunikasi jarauk juah dengan sistem komputer.
 MODEL KOMUNIKASI
Dalam proses komunikasi data dari satu lokasi ke lokasi yang lain, harus ada minimal 3 unsur utama sistem yaitu sumber data, media transmisi dan penerima. Andaikan salah satu unsur tidak ada, maka komunikasi tidak dapat dilakukan. Secara garis besar proses komunikasi data digambarkan berikut ini :
Sumber Data.
Pengertian sumber data adalah unsur yang bertugas untuk mengirimkan informasi, misalkan terminal komputer, Sumber data ini membangkitkan berita atau informasi dan menempatkannya pada media transmisi. Sumber pada umumnya dilengkapi dengan transmitter yang berfungsi untuk mengubah informasi yang akan dikirimkan menjadi bentuk yang sesuai dengan media transmisi yang digunakan, antara lain pulsa listrik, gelombang elektromagnetik, pulsa digital. Contoh dari transmisi adalah modem yaitu perangkat yang bertugas untuk membangkitkan digital bitstream dari PC sebagai sumber data mejadi analog yang dapat dikirimkan melalui jaringan telepon biasa menuju ke tujuan.
Media Transmisi
Media transmisi data merupakan jalur dimana proses pengiriman data daari satu sumber ke penerima data. Beberapa media transmisi data yang dapat digunakan jalur transmisi atau carrier dari data yang dikirimkan, dapat berupa kabel, gelombang elektromagnetik, dan lain-lain. Dalam hal ini berfungsi sebagai jalur informasi untuk sampai pada tujuannya.
Ada beberapa hal yang berhubungan dengan transmisi data yaitu kapasitas dan tipe channel transmisi, kode transmisi, mode transmisi, protokol yang digunakan dan penggunaan kesalahan transmisi.
Beberapa media transmisi yang digunaka antara lain: twisted pair, kabel coaxial, serat optik dan gelombang elektromagnetik.
Penerima Data.
Pengertian penerima data adalah alat yang menerima data atau informasi, misalkan pesawat telepon, terninal komputer, dan lain-lain. Berfungsi mnerima data yang dikirimkan oleh suatu sumber informasi. Perima merupakan suata alat yang disebut receiver yang fungsinya untuk menerima sinyal dari sistem transmisi dan menggabungkannya ke dalam bentuk tertentu yang dapat ditangkap dan digunakan oleh penerima. Sebagai contoh modem yang berfungsi sebagai receiver yang menerima sinyal analog yang dikirim melalui kabel telepon dan mengubahnya menjadi suatu bit stream agar dapat ditangkap oleh komputer penerima.
Untuk mempermudah pengertian, komunikasi dapat dijelaskan dengan suatu model komunikasi yang sederhana, seperti pada gambar 4.2. Kegunaan dasar dari sistem komunikasi ini adalah menjalankan pertukaran data antara 2 pihak. Pada gambar diberikan contoh, yaitu komunikasi antara sebuah workstation dan sebuah server yang dihubungkan sengan sebuah jaringan telepon. Contoh lainnya bisa berupa pertukaran sinyal-sinyal suara antara 2 telepon pada satu jaringan yang sama.
Berikut ini penjelasan dari contoh komunikasi data tersebut
  1. Source (Sumber). Peralatan ini membangkitkan data sehingga dapat ditransmisikan. Misalkan telepon dan PC (Personal Computer)
  2. Transmiter (Pengirim). Biasanya data yang dibangkitkan dari sistem sumber tidak ditransmisikan secara langsung dalam bentuk aslinya. Sebuah transmisi cukup memindah dan menandai informasi dengan cara yang sama seperti menghasilkan sinyal-sinyal elektromagnetik yang dapat ditransmisikan melewati beberapa sistem transmisi berurutan. Sebagai contoh, sebuah modem tugasnya menyalurkan suatu digital bit stream dari suatu alat yang sebelumnya sudah dipersiapkan misalnya PC, dan menstransformasikan bit stream tersebut menjadi suatu sinyal analog yang dapat ditransmisikan melalui jaringan telepon.
  1. Sistem Transmisi. Berupa jalur transmisi tunggal atau jaringan kompleks yang menghubungkan antara sumber dengan tujuan.
  2. Receiver (Penerima). Receiver menerima sinyal dari sistem transmisi dan menggabungkannya ke dalam bentuk tertentu yang dapat ditangkap oleh tujuan. Sebagai contoh, sebuah modem akan menerima suatu sinyal analog yang datang dari jaringan atau jalur transmisi dan mengubahnya menjadi suatu digital bit stream.
  3. Destination (Tujuan). Menangkap data yang dihasilkan okeh receiver.
BENTUK-BENTUK KOMUNIKASI DATA
Suatu sistem komunikasi data dapat berbentuk offline communication system (sistem komunikasi offline) atau online communication system (sistem komunikasi online). Sistem komunikasi data dapat dimulai dengan sistem yang sederhana, seperti misalnya jaringan akses terminal, yaitu jaringan yang memungkinkan seorang operator mendapatkan akses ke fasilitas yang tersedia dalam jaringan tersebut. Operator bisa mengakses komputer guna memperoleh fasilitas, misalnya menjalankan program aplikasi, mengakses database, dan melakukan komunikasi dengan operator lain. Dalam lingkungan ideal, semua fasilitas ini harus tampak seakan-akan dalam terminalnya, walaupun sesungguhnya secara fisik berada pada lokasi yang terpisah.
Sistem Komunikasi Off line.
Sistem komunikasi Offline adalah suatu sistem pengiriman data melalui fasilitas telekomunikasi dari satu lokasi ke pusat pengolahan data, tetapi data yang dikirim tidak langsung diproses oleh CPU (Central Processing Unit). Seperti pada Gambar 4.3, di mana data yang akan diproses dibaca oleh terminal, kemudian dengan menggunakan modem, data tersebut dikirim melalui telekomunikasi. Di tempat tujuan data diterima juga oleh modem, kemudian oleh terminal, data disimpan ke alamat perekam seperti pada disket, magnetic tape, dan lain-lain. Dari alat perekam data ini, nantinya dapat diproses oleh komputer.
Peralatan-peralatan yang diperlukan dalam sistem komunikasi offline, antara lain :
1. Terminal
Terminal adalah suatu I/O device yang digunakan untuk mengirim data dan menerima data jarak jauh dengan menggunakan fasilitas telekomunikasi. Peralatan terminal ini bermacam-macam, seperti magnetic tape unit, disk drive, paper tape, dan lain-lain.
2. Jalur komunikasi
Jalur komunikasi adalah fasilitas telekomunikasi yang sering digunakan, seperti :                 telepon, telegraf, telex, dan dapat juga dengan fasilitas lainnya.
3. Modem
Model adalah singkatan dari Modulator / Demodulator. Suatu alat yang mengalihkan data dari sistem kode digital ke dalam sistem kode analog dan sebaliknya.
Sistem Komunikasi On line.
Pada sistem komunikasi On line ini, data yang dikirim melalui terminal komputer bisa langsung diperoleh, langsung diproses oleh komputer pada saat kita membutuhkan.
Sistem Komunikasi On line ini dapat berupa:
  • Realtime system
  • Batch Processing system
  • Time sharing system
  • Distributed data processing system
Realtime system
Suatu realtime system memungkinkan untuk mengirimkan data ke pusat komputer, diproses di pusat komputer seketika pada saat data diterima dan kemudia mengirimkan kembali hasil pengolahan ke pengirim data saat itu juga. American Airlines merupakan perusahaan yang pertama kali mempelopori sistem ini. Dengan realtime system ini, penumpang pesawat terbang dari suatu bandara atau agen tertentu dapat memesan tiket untuk suatu penerbangan tertentu dan mendapatkan hasilnya kurang dari 15 detik, hanya sekedar untuk mengetahui apakah masih ada tempat duduk di pesawat atau tidak.
Sistem realtime ini juga memungkinkan penghapusan waktu yang diperlukan untuk pengumpulan data dan distribusi data. Dalam hal ini berlaku komunikasi dua arah, yaitu pengiriman dan penerimaan respon dari pusat komputer dalam waktu yang relatif cepat.
Pada realtime system, merupakan komunikasi data dengan kecepatan tinggi. Kebutuhan informasi harus dapat dipenuhi pada saat yang sama atau dalam waktu seketika itu juga. Pada sistem ini proses dilakukan dalam hitungan beberapa detik saja, sehingga diperlukan jalur komunikasi yang cepat, sistem pengolahan yang cepat serta sistem memori dan penampungan atau buffer yang sangat besar.
Penggunaan sistem ini memerlukan suatu teknik dalam hal sistem disain, dan pemrograman, hal ini disebabkan karena pada pusat komputer dibutuhkan suatu bank data atau database yang siap untuk setiap kebutuhan. Biasanya peralatan yang digunakan sebagai database adalah magnetic disk storage, karena dapat mengolah secara direct access (akses langsung), dan perlu diketahui bahwa pada sistem ini menggunakan kemampuan multiprogramming, untuk melayani berbagai macam keperluan dalam satu waktu yang sama.
Time sharing system
Time sharing system adalah suatu teknik penggunaan online system oleh beberapa pemakai secara bergantian menurut waktu yang diperlukan pemakai (gambar 4.5). Disebabkan waktu perkembangan proses CPU semakin cepat, sedangkan alat Input/Output tidak dapat mengimbangi kecepatan dari CPU, maka kecepatan dari CPU dapat digunakan secara efisien dengan melayani beberapa alat I/O secara bergantian. Christopher Strachy pada tahun 1959 telah memberikan ide mengenai pembagian waktu yang dilakukan oleh CPU. Baru pada tahun 1961, pertama kali sistem yang benar-benar berbentuk time sharing system dilakukan di MIT (Massachusetts Institute of Technology) dan diberi nama CTSS (Compatible Time Sharing System) yang bisa melayani sebanyak 8 pemakai dengan menggunakan komputer IBM 7090.
Salah satu penggunaan time sharing system ini dapat dilihat dalam pemakaian suatu teller terminal pada suatu bank. Bilamana seorang nasabah datang ke bank tersebut untuk menyimpan uang atau mengambil uang, maka buku tabungannya ditempatkan pada terminal. Dan oleh operator pada terminal tersebut dicatat melalui papan ketik (keyboard), kemudian data tersebut dikirim secara langsung ke pusat komputer, memprosesnya, menghitung jumlah uang seperti yang dikehendaki, dan mencetaknya pada buku tabungan tersebut untuk transaksi yang baru saja dilakukan.
Distributed data processing system
Distributed data processing (DDP) system merupakan bentuk yang sering digunakan sekarang sebagai perkembangan dari time sharing system. Bila beberapa sistem komputer yang bebas tersebar yang masing-masing dapat memproses data sendiri dan dihubungkan dengan jaringan telekomunikasi, maka istilah time sharing sudah tidak tepat lagi. DDP system dapat didefinisikan sebagai suatu sistem komputer interaktif yang terpencar secara geografis dan dihubungkan dengan jalur telekomunikasi dan seitap komputer mampu memproses data secara mandiri dan mempunyai kemampuan berhubungan dengan komputer lain dalam suatu sistem.
Setiap lokasi menggunakan komputer yang lebih kecil dari komputer pusat dan mempunyai simpanan luar sendiri serta dapat melakukan pengolahan data sendiri. Pekerjaan yang terlalu besar yang tidak dapat dioleh di tempat sendiri, dapat diambil dari komputer pusat.
  JARINGAN KOMUNIKASI DATA
Jaringan Komunikasi data atau Jaringan Komputer merupakan sekumpulan komputer yang saling terhubung satu sama lain menggunakan protokol dan media transmisi tertentu. Berdasarkan luas area cakupan yang dicapai jaringan komputer dapat diklasifikan menjadi : Local Area Network (LAN) dan Wide area Network (WAN). Luas cakupan LAN lebih kecil dari WAN biasanya terdiri dari sekelompok gedung yang saling berdekatan.
TOPOLOGI JARINGAN
Topologi jaringan merupakan suatu cara untuk menghubungkan komputer atau terminal-terminal dalam suatu jaringan. Model dari topologi jaringan yang ada antara lain: Star, Loop, ring dan Bus.
Topologi Star
Pada topologi ini LAN terdiri dari sebuah cntral node yang berfungsi sebagai pengatur arus informasi dan penanggung jawa komunikasi dalam suatu jaringan. Jadi jika node yang satu ingin berkomunikasi dengan node yang lain maka harus melalui sentral node. Fungsi central node disini sangat penting, biasanya dalam sistem ini harus mempunyai kehandalan yang tinggi.
Topologi Bus
Pada topologi bus ini, node yang satu dengan node yang lain dihubungkan dengan jalur data atau bus. Semua node memiliki status yang sama antara satu dengan yang lainnya.
Topologi Loop
Topologi Loop ini menghubungkan antar node secara serial dalam bentuk suatu lingkaran tertutup. Semua node memiliki status yang sama.
Pada topologi loop ini, setiap node dapat melakukan tugas untuk operasi yang berbeda-beda. Topologi ini memiliki kelemahan, jika salah satu node rusak maka akan dapt menyebabkan gangguan komunikasi antar node satu dengan yang lainnya.
Topologi Ring
Topologi ring atau topologi cincin ini merupakan topologi hasil penggabungan antara topologi loop dengan topologi bus. Keuntungannya adalah bahwa jika salah satu node rusak, maka tidak akan mengganggu jalannya komunikasi antar node karena node yang rusak tersebtu diletakkan terpisah dari jalur data.
 

Rabu, 12 Oktober 2011

PLC

PLC (Programmable Logic Controller) adalah alat kontrol logika yang bisa diprogram atau sebuah komputer yang dirancang khusus untuk mengontrol suatu proses atau mesin.

Sistem kendali dalam teknik listrik mempunyai arti suatu peralatan atau sekelompok peralatan yang digunakan untuk mengatur fungsi kerja suatu mesin dan memetakan tingkah laku mesin tersebut sesuai dengan yang dikehendaki. Fungsi kerja mesin tersebut mencakup antara lain menjalankan (start), mengatur (regulasi), dan menghentikan suatu proses kerja. Pada umumnya, sistem kendali merupakan suatu kumpulan peralatan listrik atau elektronik, peralatan mekanik, dan peralatan lain yang menjamin stabilitas dan transisi halus serta ketepatan suatu proses kerja. Sistem kendali mempunyai tiga unsur yaitu input, proses, dan output.



Gambar 1.1 Komponen Sistem Kendali
Input pada umumnya berupa sinyal dari sebuah transduser, yaitu alat yang dapat merubah besaran fisik menjadi besaran listrik, misalnya tombol tekan, saklar pembatas, termostat, dan lain-lain. Transduser memberikan informasi mengenai besaran yang diukur, kemudian informasi ini diproses oleh bagian proses. Bagian proses dapat berupa rangkaian kendali yang menggunakan peralatan yang dirangkai secara listrik, atau juga berupa suatu sistem kendali yang dapat diprogram, misalnya PLC.
Pemrosesan informasi (sinyal input) menghasilkan sinyal output yang selanjutnya digunakan untuk mengaktifkan aktuator (peralatan output) yang dapat berupa motor listrik, kontaktor, katup selenoid, lampu, dan sebagainya. Dengan peralatan output, besaran listrik diubah kembali menjadi besaran fisik. Sistem kendali dibedakan menjadi dua, yaitu sistem kendali loop terbuka dan sistem kendali loop tertutup. 
Sistem Kendali Loop Terbuka proses pengendalian di mana variabel input mempengaruhi output yang dihasilkan.

Gambar 1.2 menunjukkan diagram blok sistem kendali loop terbuka.


Dari gambar 1.2 di atas, dapat dipahami bahwa tidak ada informasi yang diberikan oleh peralatan output kepada bagian proses sehingga tidak diketahui apakah hasil output sesuai dengan yang dikehendaki.
Sistem Kendali Loop Tertutup suatu proses pengendalian di mana variabel yang dikendalikan (output) disensor secara kontinyu, kemudian dibandingkan dengan besaran acuan.
Variabel yang dikendalikan dapat berupa hasil pengukuran temperatur, kelembaban, posisi mekanik, kecepatan putaran, dan sebagainya. Hasil pengukuran tersebut diumpan-balikkan ke pembanding (komparator) yang dapat berupa peralatan mekanik, listrik, elektronik, atau pneumatik. 
Pembanding membandingkan sinyal sensor yang berasal dari variabel yang dikendalikan dengan besaran acuan, dan hasilnya berupa sinyal kesalahan. Selanjutnya, sinyal kesalahan diumpankan kepada peralatan kendali dan diproses untuk memperbaiki kesalahan sehingga menghasilkan output sesuai dengan yang dikehendaki. Dengan kata lain, kesalahan sama dengan nol.

Gambar 1.3 Diagram Blok sistem kendali loop tertutup

Sistem Kendali PLC
Pada sistem otomasi, PLC merupakan ‘Jantung’ sistem kendali. Dengan program yang disimpan dalam memori PLC, dalam eksekusinya, PLC dapat memonitor keadaan sistem melalui sinyal dari peralatan input, kemudian didasarkan atas logika program menentukan rangkaian aksi pengendalian peralatan output luar.
PLC dapat digunakan untuk mengendalikan tugas-tugas sederhana yang berulang-ulang (sekuensial), atau di-interkoneksi dengan yang lain menggunakan komputer (host) melalui sejenis jaringan komunikasi untuk mengintegrasikan pengendalian proses yang kompleks.

Gambar 1.4 Diagram Skema Sistem Kendali PLC terpusat
Sistem kendali PLC hadir dalam berbagai bentuk dan beragam dalam skala impelemntasinya; dari power plant sampai ke mesin semikonduktor. Sebagai hasil dari perkembangan teknologi, tugas-tugas kendali yang rumit dimudahkan oleh sistem kendali otomatis yang secara umum dalam dunia industri berupa ProgrammableLogic Controller (PLC), komputer host, dan lain sebagainya. Selain antarmuka sinyal (signal interfacing) ke perangkat kerja (seperti: panel operator, motor-motor, sensor-sensor, sakelar-sakelar, katup solenoid dan sebagainya), kemampuan di dalam komunikasi jaringan memungkinkan implementasi dalam skala yang lebih besar dan koordinasi berbagai proses juga menyediakan fleksibelitas yang tinggi dalam merealisasikan sistem kendali terdistribusi. 

Gambar 1.5 Diagram Skema Konsep Aplikasi PLC
Setiap komponen dalam sistem kendali memegang peranan penting (tanpa melihat dimensinya) dalam proses yang dijalankan. Sebagai contoh, Gambar 1-2 memperlihatkan bahwa PLC tidak dapat mengetahui apa yang terjadi tanpa adanya perangkat sensor. Apabila diperlukan, sebuah komputer host dapat dipasang untuk mengkoordinasikan aktifitas kendali pada level dasar (shop floor atau device level).
PLC, sekarang juga dikenal sebagai Programmable Controller atau Programmable Automations Controller (PAC) merupakan perangkat kendali logika; yang termasuk keluarga komputer yang dapat diprogram secara berulang-ulang. PLC dapat menyimpan intruksi-instruksi logika, seperti sequencing, timing, counting, data manipulation, dan communication untuk mengendalikan mesin-mesin industri dan proses-proses industri. Gambar 1-3 mengilustrasikan diagram skema konsep aplikasi PLC.
PLC juga dapat didefinisikan sebagai komputer industri yang didesain dengan arsitektur khusus, baik dalam unit sentral dalam PLC itu sendiri, maupun rangkaian antarmukanya dengan perangkat-perangkat kendali (koneksi Input/Output (I/O) dengan dunia nyata). 



sumber : http://plcum.blogspot.com/2009/02/more-about-plc.html

Minggu, 18 September 2011

Mikroprosesor 8088

Mikroprosesor 8088 mulai diperkenalkan oleh Intel Corporation pada tahun 1978. Mikroprosesor ini mengawali sejarah perkembangan mikroprosesor Intel selanjutnya, seperti 80186, 80286, 80386, 80486, Intel Pentium I, sampai yang sekarang Intel Pentium IV. Semua instruksi yang terdapat pada mikroprosesor 8088 sepenuhnya dapat dijalankan pada mikroprosesor-mikroprosesor Intel tersebut. Karena itu, untuk memahami perancangan hardware dan software pada PC sekarang, ada baiknya jika Anda lebih dahulu memahami perancangan hardware dan software pada mikroprosesor 8088 ini.
Mikroprosesor 8088 mempunyai 8 bit jalur data dan 20 bit jalur alamat. Jalur data memiliki pin yang sama dengan jalur alamat, artinya pada saat tertentu digunakan sebagai jalur data dan pada saat yang lain digunakan sebagai jalur alamat. Karena satu pin memiliki dua fungsi, yaitu sebagai jalur data dan jalur alamat maka digunakanlah sistem time multiplexing, yaitu penggunaan jalur yang sama untuk fungsi dan waktu yang berbeda, sehingga tidak bisa data dan alamat dikirim pada saat yang bersamaan. Mikroprosesor 8088 dibuat dalam bentuk IC dengan kaki sebanyak 40 pin (jenis DIP 40).
Ada dua mode yang dapat digunakan pada mikroprosesor 8088, yaitu mode minimum dan mode maksimum. Pena yang menjadi penentu penggunaan mode adalah pena MN/MX. Mode minimum biasanya digunakan untuk sistem yang sederhana yang umumnya menggunakan prosesor pada satu PCB. Sedangkan mode maksimum umumnya digunakan untuk sistem yang lebih kompleks yang menggunakan multi I/O dan memori yang terpisah serta dapat pula digunakan dengan co-prosesornya (co-prosesor untuk 8088 adalah 8087). Dalam homepage ini, penulis hanya akan menjelaskan perancangan pada mode minimum saja, karena umumnya cukup dengan mode minimum saja suatu alat pengontrol/kendali otomatis sudah dapat diwujudkan.



Mikroprosesor 8088 mampu mengalamati memori sampai 1 MB. Memori ini digunakan untuk menyimpan kode biner dari instruksi yang akan dijalankan oleh µP, selain itu memori juga digunakan untuk menyimpan data secara sementara. Dengan tambahan unit I/O memungkinkan µP 8088 untuk menerima data dari luar (operasi input) ataupun mengirim data keluar (operasi output).

Konfigurasi pena µP 8088
Gambar dibawah ini memperlihatkan diagram pewaktuan yang menunjukkan siklus baca tulis ketika terjadi operasi I/O dan Memori oleh µP. Seluruh penjelasan tentang pena-pena pada mikroprosesor 8088 ini akan selalu mengacu pada diagram pewaktuan tersebut.

Pena pada µP 8088 ada yang tidak dipengaruhi oleh perubahan mode baik mode maksimum ataupun mode minimum dan ada pula pena yang berfungsi hanya pada saat mode maksimum. 

Pena yang tidak dipengaruhi oleh perubahan mode baik mode maksimum ataupun mode minimum, diantaranya adalah :
a. Bus alamat ( AD0-AD7, A8-A15, dan A16/S3-A19/S6). Mikroprosesor 8088 mempunyai 20 pin jalur alamat sehingga dapat menjangkau 220 ( 1 MB) lokasi memori. Pena-pena ini hanya berfungsi pada saat T1 (lihat diagram pewaktuan). Pada saat T2 sampai T4 ada sebagian pin yang berfungsi sebagai data dan juga sebagai status.
b. Bus data ( AD0-AD7). Mikroprosesor 8088 mempunyai jalur data sebanyak 8 pin dan bisa digunakan secara biderectional (dua arah). Pin-pin ini berfungsi sebagai jalur data hanya pada saat T2-T4. Pada saat T1 berfungsi sebagai jalur alamat.
c. Kontrol baca (RD). Sinyal ini aktif rendah. Jika pena ini berlogic nol berarti µP sedang melaksakan pembacaan data. Sinyal ini aktif dipertengahan T2 dan kembali tidak aktif dipertengahan T4.
d. Clock (CLK). Yaitu masukan sinyal detak yang diberikan dari luar untuk mensinkronkan segala kegiatan pada µP. Miroprosesor 8088 dapat bekerja pada frekuensi clock 4,77 MHz atau 8 MHz untuk versi turbo.
e. Kontrol waktu tunggu (READY). Sinyal READY ini disampel pada sisi naik T2. Jika sinyal READY ini berlogic 0 berarti akan disisipkan TW/Twait antara T3 dan T4. Hal ini terus diulangi sampai sinyal READY diberi logika 1. Sinyal ini biasanya digunakan jika ada hardware lain yang memiliki kecepatan lebih lambat dari kecepatan µP ketika sedang bekerja dalam keadaan normal.
f. Reset sistem (RESET). Sinyal ini aktif tinggi. Bila logika 1 diberikan pada pena ini, mikroprosesor akan menghentikan segala kegiatan yang sedang terjadi saat itu. Semua register akan dibuat 0 kecuali register code segment dibuat FFFF0H (akan dijelaskan pada penjelasan mengenai segment register ).
g. Interupsi (INTR dan NMI). INTR dan NMI (Non Maskable Interrupt) adalah permintaan interupsi yang dipanggil secara hardware. Sinyal INTR merupakan sinyal aktif tinggi, sedangkan NMI dapat aktif menggunakan trigger sisi naik dari sinyal clock. INTR tidak akan berfungsi jika interupsi flag dikosongkan (menggunakan instruksi CLI ), sedangkan NMI tidak dapat dihalangi dengan instruksi CLI.
h. Kontrol tunggu test (TEST). Untuk mengaktifkan sinyal TEST, digunakan instruksi WAIT. Jika pin ini berlogic 1 ketika µP sedang menjalankan instrruksi WAIT, CPU akan berada pada keadaan idle mode, artinya mikroprosesor tidak melakukan kegiatan apa-apa sebelum pin ini berlogic 0. Jika pin ini berlogic 0 kembali, maka pelaksanaan instruksi akan dilanjutkan.
i. Status (A16/S3-A19/S6). Sinyal status digunakan untuk mendeteksi suatu keadaan-keadaan atau operasi-operasi yang sedang berlangsung, diantaranya pengambilan instruksi, membaca memori, menulis memori, dan operasi-operasi yang lain. Sinyal ini dikeluarkan pada saat keadaan T2-T4. Definisi dari status S4 dan S3 adalah :
S4.. S3 Yang Dijangkau saat terjadi siklus bus
0.. ...0 Extra segment (ES)
0..... 1 Stack segment (SS)
1..... 0 Code segment (CS) atau tidak sama sekali
1..... 1 Data segment (DS)
j. Catu daya ( VCC dan GND). Mikroprosesor 8088 membutuhkan Vcc = +5 V yang masih bisa bertoleransi sebesar ± 10% dari +5 V. 

Sinyal yang berfungsi hanya pada mode minimum ( mode maksimum tidak digunakan ) adalah :
a. Sinyal tulis (WR). Sinyal ini aktif rendah. Jika sinyal ini berlogic 0, berarti µP sedang melaksanakan operasi tulis data ke unit memori atau I/O. Sinyal ini aktif pada saat T2-T4.
b. Sinyal kontrol memori dan I/O ( IO/M ). Jika pena ini berlogic 0, berarti saat ini pada siklus bus sedang berlangsung operasi input/output. Jika pena ini berlogic 1, berarti saat ini pada siklus bus sedang berlangsung operasi memori.
c. Address Latch Enable (ALE). Sinyal ini digunakan sebagai penahan alamat yang baru masuk dalam suatu proses siklus mesin. Sinyal ini dapat digunakan untuk dimultipleks dengan alamat, data, dan status. Sinyal ini mengeluarkan logic 1 pada saat clock T1.
d. Pengiriman dan penerimaan data ( DT/R ). Jika sinyal ini berlogic 1, arah data adalah dari µP menuju keluar. Jika sinyal ini berlogic 0 maka arah data dari luar menuju µP.
e. Data Enable ( DEN ). Sinyal ini biasanya digunakan untuk meng"on"kan buffer (latch) yang dihubungkan kebus data.
f. Interrupt Acknowledge ( INTA ). Sinyal ini secara khusus digunakan sebagai tanggapan terhadap suatu instruksi INTR.
g. Hold Request ( HOLD). Bila logika 1 diberikan pada pena HOLD, µP akan menghentikan kegiatan dan melepas bus yang berhubungan dengan unit memori dan I/O, sehingga hal ini memberikan kesempatan bagi proses lain untuk mengambil alih sistem.
h. Hold Acknowledge (HLDA) Sinyal ini digunakan sebagai pengakuan dari µP bahwa sinyal HOLD telah diterima dan sistem dapat diambil alih oleh prosesor lain. 

Sinyal yang berfungsi hanya pada saat mode maksimum adalah :
a. Status siklus bus ( S0, S1, S2 ). Sinyal ini merupakan keluaran yang akan diberikan oleh IC lain yang berfungsi sebagai bus kontroller .
b. Kunci ( LOCK ). Sinyal ini akan mengeluarkan logika 0 selama pelaksanaan instruksi LOCK sehingga akan mencegah prosedur lain menjangkau sistem.
c. Status antrian ( QS0, QS1). Sinyal ini akan memberitahu informasi apa yang telah dipindahkan dan informasi apa yang ada dalam antrian sewaktu terjadi siklus clock sebelumnya.
d. Local Bus Control ( RQ/ GT1 dan RQ/ GT0 ). Sinyal ini menggantikan fungsi HOLD dan HLDA pada mode minimum.

III. Arsitektur Internal µP 8088
Arsitektur internal µP 8088 dibagi menjadi dua bagian, yaitu BIU (Bus Interface Unit) dan EU (Execution Unit). BIU berfungsi untuk menjalankan operasi bus seperti menjemput instruksi, membaca data dan menulis ke memori, menerima input dan mengeluarkan output ke unit periferal. Dari BIU ini, dihasilkan bus data sebanyak 8 bit. Untuk menjalankan fungsinya, BIU memiliki register segment, register komunikasi internal, pointer instruksi, antrian kode objek instruksi, bus alamat, dan bus kontrol logika. EU berfungsi untuk menterjemahkan dan menjalankan instruksi.
Mikroprosesor 8088 mempunyai 4 kelompok register internal yaitu register penunjuk instruksi (indeks pointer register), register data (general purpose register), register segment (segment register), serta flag register.
 
Register Penunjuk Instruksi (Indeks Pointer Register).
Register Penunjuk instruksi merupakan register 16 bit yang berfungsi untuk menunjukkan lokasi instruksi berikutnya yang akan dijalankan. Register IP ini berpasangan dengan CS (code segment) dimana penulisannya adalah sebagai berikut [CS : IP]. Jadi lokasi alamat yang ditunjuk bergantung pada code segment yang terdapat pada segment register.
 
Register Data (General Purpose Register).
Register data pada µP 8088 dibagi menjadi 4 kelompok register yang semuanya berfungsi untuk penyimpanan data secara sementara. Keempat kelompok register ini adalah register AX, BX, CX. dan DX. Register AX, BX, CX, dan DX merupakan register data 16 bit. Register-register 16 bit dari kelompok ini mempunyai suatu ciri khas, yaitu dapat dipisah menjadi 2 bagian dimana masing-masing bagian terdiri dari 8 bit, yaitu register data AH; AL (untuk AX), BH; BL (untuk BX), CH; CL (untuk CX), dan DH; DL (untuk DX). Akhiran H menunjukkan High dan akhiran L menunjukkan Low. Selain berfungsi sebagai penyimpan data serba guna yang dapat digunakan secara bebas oleh pemogram, register-register tersebut memiliki juga fungsi-fungsi lainnya secara khusus, yaitu : Register AX biasanya digunakan pada operasi aritmatika (perkalian dan pembagian), dan operasi I/O 16 bit. Register BX biasanya digunakan untuk menunjukkan suatu alamat offset dari suatu segment. Register CX biasanya digunakan untuk menunjukkan banyaknya looping yang akan terjadi. Register DX biasanya digunakan untuk menampung sisa hasil pembagian 16 bit serta pada operasi I/O secara tidak langsung (16 bit)
 
Register Penunjuk dan Register Indeks (Indeks and Pointer Register).
Mikroprosesor 8088 mempunyai dua buah register penunjuk (register SP dan BP) serta dua buah register indeks ( register SI dan DI). Data yang terdapat pada SP ( Stack Pointer) memungkinkan pemogram untuk menjangkau lokasi memori dari stack segment. Stack pointer yang berpasangan dengan stack segment (SS : SP) digunakan untuk menunjukkan alamat dari stack RAM (Random Access Memory). Stack RAM ini biasanya digunakan untuk menyimpan informasi yang berhubungan dengan operasi stack, seperti isi PC, alamat kembali (return address) pada instruksi CALL, dan akumulator. Penyimpanan informasi pada stack RAM menggunakan sistem LIFO (Last In First Out), artinya data yang terakhir dimasukkan (PUSH) merupakan data pertama yang akan diambil (POP). BP (Base Pointer) yang berpasangan dengan register stack segment (SS) digunakan untuk mencatat suatu alamat dimemori tempat data. Source Indeks (SI) dan Destination Indeks (DI) biasanya digunakan pada operasi string dengan mengakses secara langsung pada alamat dimemori yang ditunjukkan oleh kedua register ini .
 
Register Segment (Segment Register).
Mikroprosesor 8088 menghasilkan 20 bit alamat sehingga dapat menjangkau 1 MB lokasi memori ( 220 = 1048576 Byte atau disingkat 1 MB). Namun pada µP 8088 register yang tersedia hanya 16 bit ( 216 = 64 KB), sehingga untuk menjangkau alamat 1 MB, memori pada µP 8088 dibagi menjadi ruas-ruas 64 KB, sehingga setiap saat hanya ada 4 segment (ruas) yang dapat aktif. Segment-segment register ini adalah: Code Segment (CS), Data Segment (DS), Stack Segment (SS), dan Extra Segment (ES). Code segment digunakan untuk menyimpan program. Data segment digunakan untuk menyimpan data program. Extra segment digunakan untuk menyimpan segment data tambahan. Stack segment digunakan nuntuk menyimpan alamat kembalinya interupsi dan subrutin. Keempat register diatas menunjuk kelokasi masing-masing segment. Karena register segment hanya terdiri dari 16 bit, sedangkan memori yang dapat dijangkau sebanyak 20 bit, maka unit BIU ( Bus Interface Unit) akan menambah 4 bit lagi pada LSB. Sebagai contoh, jika register ES=2721H, maka register akan menunjuk kelokasi 27210H. Setiap segment hanya dapat menampung 64 KB lokasi memori, sehingga jika CS=A000H, maka lokasi memori untuk Code Segment dimulai dari A0000H sampai AFFFFH (64 KB).
Setiap kali catu daya dihidupkan, µP berada dalam keadaan sembarang dimana semua register berisi data yang tidak dapat diramalkan. Hal ini memungkinkan terjadinya pembacaan maupun penulisan lokasi memori yang acak pula. Karena itu semua register µP harus dibuat nol kecuali Code Segment register dibuat FFFF0H, sehingga µP akan menjemput instruksi yang berada pada alamat fisik FFFF0H. Jadi dengan memberikan sinyal RESET ketika pertama kali dihidupkan, µP akan selalu menjemput instruksi pada lokasi FFFF0H. Setelah menempatkan suatu instruksi pada lokasi tersebut, maka instruksi itu merupakan instruksi yang pertama kali dijalankan ketika µP dinyalakan atau ketika diberi sinyal RESET
 
Flag Register.
Flag register merupakan register 16 bit, namun pada µP 8088 yang digunakan hanya 12 bit, yaitu 9 bit untuk status dan 3 bit untuk kontrol. Diagram blok flag register adalah sebagai berikut :
X X X X OF DF IF TF SF ZF X AF X PF X CF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fungsi masing-masing register tersebut adalah:
CF (Carry Flag) jika berlogic 1 berarti terdapat carry atau borrow pada MSB (Most Significant Bit) yang terjadi selama operasi aritmatika. Jika berlogic 0 berarti tidak terdapat carry atau borrow.
PF (Parity Flag) jika berlogic 1 berarti 8 bit terendah menghasilkan paritas genap dan jika manghasilkan paritas ganjil PF akan berlogic 0
AF (Auxillary Carry Flag) jika berlogic 1 berarti terdapat carry pada bit ke 4 pada register AL dan bila tidak akan berlogic 0. Register ini biasanya digunakan pada operasi BCD, seperti perintah AAA. ZF (Zero Flag), jika berlogic 1 maka operasi aritmatika menghasikan sisa 0, jika berlogic 1 maka tidak menghasilkan 0
SF (Sign Flag) jika digunakan bilangan bertanda bit ini akan bernilai 1. Sedangkan bila SF berlogic 0 berarti bilangan diperlakukan sebagai bilangan tidak bertanda. Bilangan bertanda dibagi menjadi bilangan positif (+) dan bilangan negatif (-). Pada bilangan bertanda, bit terakhir (bit ke-16) diperlakukan sebagai tanda (+) atau tanda(-). Jika bit terakhir tersebut bernilai 1 berarti bilangan tersebut negatif dan jika bit terakhir bernilai 0 berarti bilangan tersebut positif
TF (Trace Flag) jika berlogic 1 berarti berada pada keadaan single step. Keadaan ini digunakan pada program Debug
IF (Interrupt Flag) jika berlogic 1 berarti Maskable Interrupt Request dapat dilakukan. Jika berlogic 0 maka permintaan interupsi tidak dapat dipenuhi oleh CPU
OF (Over Flow Flag) jika terjadi Over Flow pada operasi aritmatika, bit ini akan bernilai 1. Dan jika tidak terjadi Over Flow pada operasi aritmatika, bit ini akan bernilai 0
DF (Direction Flag) jika berlogic 1 berarti pada instruksi string nilai register akan diturunkan secara otomatis dan jika berlogic 0 maka akan dinaikkan secara otomatis
X Tidak digunakan
 
Alamat Relatif dan Alamat Absolut
Didalam suatu segment, alamat dimulai dari 0000H sampai FFFFH (64KB). Alamat ini disebut juga alamat relatif / offset. Sedangkan alamat absolut dari 0000H s/d FFFFH adalah 00000H s/d FFFFFH. Berikut kita lihat cara pengkonversian alamat relatif kealamat absolut. Pengkonversian dapat dilakukan dengan menggeser nilai segment sebanyak 4 bit kekiri dan kemudian dijumlahkan dengan nilai offset. Atau cara yang lebih sederhana adalah dengan mengalikan nilai segment dengan 2 pangkat 4 (10H) kemudian dijumlahkan dengan nilai offset. Cara ini dikembangkan dari besarnya selisih segment yang satu dengan yang berikutnya sebesar 2 pangkat 4 (10H). Lihatlah contoh dibawah ini:
Alamat relatif : 1357H : 2468H 1356H : 2478H
Pengkonversian : 13570H 13560H
  2468H 2478H
  __________+ __________+
Alamat absolut : 159D8H 159D8H
Pada kedua contoh diatas terlihat jelas alamat relatif 1357H : 2468H sebenarnya menunjukkan lokasi yang sama didalam memori (alamat absolutnya) dengan alamat relatif 1356H : 2478H yang disebabkan adanya overlapping.

Generator Clock Untuk Mikroprosesor 8088
Tidak seperti 8085, mikroprosesor 8088 tidak mempunyai pembangkit clock sendiri, ia harus diberi clock dari luar. Miroprosesor 8088 dapat bekerja pada frekuensi clock 4,77 MHz atau 8 MHz (untuk versi turbo). Mikroprosesor 8088 juga membutuhkan sinyal sinkronisasi reset terhadap clock. Untuk memenuhi persyaratan diatas, tersedia dipasaran IC yang telah dirancang sebagai generator clock yaitu IC 8284 (sekedar informasi tambahan, Anda dapat saja menggunakan pembangkit-pembangkit clock yang lain, asalkan sesuai dengan spesifikasi clock untuk 8088). Gambar dibawah ini memperlihatkan pena-pena dari IC 8284.


Arti pena-penanya adalah sebagai berikut:
Vcc Catu daya + 5V
GND Ground
X1&X2 Masukan untuk crystal eksternal
OSC Keluaran osilator yang mempunyai frekuensi yang sama dengan frekuensi crystal
CLK Sinyal clock untuk dikirimkan keµP.Sinyal ini mempunyai frekuensi 2/3 dari frekuensi crystal dengan siklus kerja 33%
PCLK Sinyal ini mempunyai frekuensi ½ dari frekuensi yang dikeluarkan pena CLK, dan memiliki siklus kerja 50%
F/ C Pena ini merupakan penentu referensi untuk clock. Jika pena ini berlogic 1, maka clock mendapat sumber dari pena EFI, sedangkan jika berlogic 0 mendapat sumber dari pena OSC
EFI Masukan frekuensi eksternal yang digunakan untuk sebagai sumber clock
CSYNC Sinkronisasi clock yang digunakan untuk sinkronisasi beberapa IC 8284. Jika menggunakan crystal pena ini dibuat 0
RES Digunakan untuk sinyal menghasilkan reset
RESET Digunakan menghasilkan sinyal reset untuk µP setelah disinkronisasi dahulu dengan RES dan CLK
READY Sinyal ini berfungsi untuk memberitahukan µP bahwa unit I/O dan memori siap untuk mengirim atau menerima data
AEN1 dan RDY1 Sinyal ini digunakan untuk membangkitkan keadaan tunggu ke µP
AEN2 dan RDY2 Sama dengan pena AEN1 dan RDY1, sinyal ini digunakan untuk membangkitkan keadaan tunggu ke µP
ASYNC Sinkronisasi untuk memilih tipe masukan yang diberikan pada IC 8284
Untuk membangkitkan sinyal clock pada IC 8284 ini ada 2 cara, cara pertama yaitu dengan memasang crystal pada masukan X1 dan X2 serta dengan memberikan logic 0 pada pena F/C. Cara yang kedua adalah dengan memberikan frekuensi eksternal pada pena EFI dan pena F/C dibuat 1.